ICS CCS

T/OTOP

团

体

标

准

T/OTOP XXXX—2023

面向便捷交易的农业畜禽养殖碳汇方法学

Methodology for Agricultural Livestock and Poultry Carbon Sink Practices
Oriented Towards Convenient Trading

(征求意见稿)

2023 - XX - XX 发布

2023 - XX - XX 实施

目 录

前	言	2
引	言	3
面	向便捷交易的农业畜禽养殖碳汇方法学	4
1	范围	4
2	适用条件	4
3	规范性引用文件	4
4	术语和定义	4
5	项目边界	5
6	额外性论证	6
7	面向便捷交易的农业畜禽养殖碳汇方法学项目计算流程	7
8	农业畜禽养殖碳汇方法学基线情景碳排放量	7
9	农业畜禽养殖碳汇方法学项目情景碳排放量	9
10	畜禽养殖碳汇方法学泄漏碳排放量	12
11	可交易智能测度系统(ALPCS)智能计算软件工具	15
12	监测参数	15
13	农业畜禽养殖碳汇方法学项目测算步骤	19
附:	录 A	25
(资	5料性附录)	25
全:	球变暖潜势(GWP)值对照表	25
参:	考文献	26

前 言

本文件按照GB/T1.1—2020《标准化工作导则第1部分:标准化文件的结构和起草规则》的规定起草。本文件由中国民族贸易促进会提出并归口。

请注意本标准的某些内容可能涉及专利。本标准的发布机构不承担识别专利的责任。

本文件起草单位:

江南大学国家安全与绿色发展研究院、中国矿业大学经济管理学院、中国民贸一乡一品产业促进中心、国利(无锡)技术信息有限责任公司、安徽省农业科学院作物研究所、安徽省产权交易中心有限责任公司、北京市农林科学院。

本文件主要起草人:陈红、那静文、马万祺、王欣茹、杨舒涵、龙如银、吴继安、李倩文、彭旭、 史艳旻、张芊、孙青青、吴梅芬、陈佳巍、蓝军、杨子谦、董春松、汪建来、黄磊、韩平。

本文件为首次发布。

引言

我国是农业生产大国,农业生产一直是国民经济的重要组成部分。在农业农村经济的发展中,畜牧业作为支柱产业的地位不容忽视,畜牧业已经成为推动农业现代化进程和经济高质量发展过程中不可或缺的重要抓手。

本面向便捷交易的农业畜禽养殖碳汇方法学聚焦畜禽养殖碳汇测度,通过构建畜禽养殖碳汇项目基线、项目排放、项目泄漏等多情景物理场域,并利用排放因子法、机器学习等多条件跨域碳排因子拟合技术对畜禽固碳项目进行智能精准测度,考虑碳排、固碳、碳汇全过程一体化的技术需求,形成可交易智能测度系统(ALPCS)工具,旨在为畜禽养殖碳排放核算及碳减排路径提供方法学指导和标准化管理思路,推动畜禽养殖业可持续、高质量发展。

本方法学的制定和实施将有助于推动完善我国农业畜禽生态养殖模式,提升及其产品市场竞争力,满足消费者对于产品绿色、健康、低碳、可追溯等属性的多样化需求,同时有助于提高畜牧业资源利用效率和生态效益,加强畜牧业与其他行业在低碳环保领域的协同合作,对推动农业生态良性循环和双碳目标早日实现具有重要的示范引领作用和深刻的时代意义。

本方法学同国内已有的相关项目方法学相比,具有如下4个特点:

- ①重点面向农业畜禽养殖碳汇资源的可交易性进行碳汇核算;
- ②采用了简明核算方法测度不同农业畜禽养殖碳汇规模水平:
- ③精准划分国内农业畜禽养殖碳排放的种类,提出了适用于农业畜禽养殖碳汇的核算和计量方法;
- ④开发了可交易智能测度系统(ALPCS)智能计算软件工具。

面向便捷交易的农业畜禽养殖碳汇方法学

1 范围

本文件规定了农业畜禽养殖碳汇的核算原则、核算边界、核算对象和核算方法。本文件适用于农业畜禽养殖碳汇项目的碳汇核算工作。

2 适用条件

本方法学的适用条件包括:

- (1) 畜禽粪便来自规模化饲养的动物,包括猪、鸡、肉牛、奶牛、羊、水牛等;
- (2) 基线情景下畜禽粪便未排入水体(如河流、湖泊等);
- (3) 基线情景下厌氧粪便所在地年平均气温高于5℃;
- (4) 基线情景下,粪便在处理系统内的滞留时间大于30天;
- (5) 如果基线情景下粪便管理为厌氧氧化塘处理系统,氧化塘的深度不低于1米;
- (6) 如果基线情景下粪便管理为漏缝地板水泡粪系统,地板下粪坑深度不低于0.8米;
- (7) 基线情景下没有温室气体的回收或利用措施或设施;
- (8) 在项目或基线活动下,粪便管理系统设有防渗措施,不会造成污水渗漏影响下水;
- (9) 项目减排量不大于6万吨CO2当量。

3 规范性引用文件

本方法学遵循下列规范性文件的规定:

CMS-021-V01 动物粪便管理系统甲烷回收

CMS-075-V01 通过堆肥避免甲烷排放

CMS-082-V01 畜禽粪便堆肥管理减排项目方法学

CM-086-V01 通过将多个地点的粪便收集后进行集中处理减排温室气体

CM-090-V01 ACM0010 粪便管理系统中的温室气体减排

CM-107-V01 利用粪便管理系统产生的沼气制取并利用生物天然气温室气体减排方法学国家发展与改革委员会[2012]1668号 温室气体自愿减排交易管理暂行办法

2006年IPCC国家温室气体清单指南

SDG 13 METHODOLOGY FOR ANIMAL MANURE MANAGEMENT AND BIOGAS USE FOR THERMAL ENERGY GENERATION

AMS-III.D. Small-scale Methodology--Methane recovery in animal manure management systems

4 术语和定义

下列术语和定义适用于本文件。

4.1

农业畜禽养殖碳汇 Animal husbandry carbon sink

通过农业畜禽养殖活动所促进的碳循环过程中,生物体的生长和代谢释放出的温室气体被农业系统 所吸收并存储的过程,从而减少大气中温室气体的浓度,起到减缓气候变化的作用。

4.2

面向便捷交易 Oriented Towards Convenient Trading

农业畜禽养殖碳汇项目中,通过采用一系列的技术和方法,实现了碳汇项目的高效开展和快速交易, 从而提高了项目的实施效率和效益。

4.3

基线情景 Baseline Scenario

在没有本实施碳汇项目的情况下,核算区域的畜禽养殖业温室气体排放量和碳汇能力所处的状态。

4.4

项目情景 Project Scenario

在实施本碳汇项目后,畜禽养殖业对温室气体的排放和碳汇能力发生变化的情况,其核心是确定项目实施后的温室气体减排和吸收量,并与基线情景进行对比分析,得出项目的减排和吸收效果。

4.5

项目边界 Project Boundary

在项目实施过程中所涉及的范围和限制,包括时间、空间、温室气体种类和来源、碳汇边界以及生 命周期边界等方面的内容。

4.6

基线碳汇量 Baseline carbon sink

基线情景下农业畜禽养殖碳汇项目边界内各碳库的碳储量变化之和。

4.7

项目碳汇量 Project carbon sink

项目情景下农业畜禽养殖碳汇项目边界内各碳库的碳储量变化之和。

4.8

额外性 Additionality

农业畜禽养殖碳汇量高于基线的碳汇量水平,即这种项目活动在没有外来的诸如投资、技术、融资以及风险等方面的竞争劣势和/或障碍因素,这种额外的碳汇量在没有农业畜禽养殖碳汇项目活动时是不会产生的。

5 项目边界

5.1 项目包括的空间范围

- (1) 畜禽养殖场;
- (2) 堆肥处理厂或堆肥处理区域;

T/0T0P XXXX—2023

- (3) 粪便污水贮存设施;
- (4) 粪便固液分离或其他处理或预处理设施;
- (5) 从畜禽场到堆肥处理厂或处理区域的管道或运输系统。

5.2 项目边界内包括或不包括的温室气体排放源

项目包括或不包括的温室气体排放源,如表1所示。

表1 项目包括或不包括的温室气体排放源

	来源	气体	包括与否	原因/解释
	粪便处理系统的消	CO_2	不包括	不包括有机废弃物分解而产生的CO ₂
	耗排放	CH ₄	包括	基线情景主要排放源
基线		N_2O	包括	基线情景主要排放源
情景	用电、用水或化石	CO_2		基线情景下,粪便处理过程中
	燃料过程中的消耗			的电力、水力或化石燃料消耗
	排放	CH ₄	不包括	简化排除
	711/94	N ₂ O	不包括	简化排除
		CO_2	不包括	不包括有机废弃物分解排放的
	废弃物管理系统的	002	.1 G1H	CO_2
	消耗排放	$\mathrm{CH_{4}}$	包括	项目情景主要排放源
		N_2O	包括	项目情景主要排放源
	用电过程中的消耗 排放	CO_2	包括	项目情景主要排放源
		$\mathrm{CH_4}$	不包括	简化排除
		N_2O	不包括	简化排除
番目		CO_2	包括	项目情景主要排放源
项目	化石燃料消耗排放	$\mathrm{CH_4}$	不包括	简化排除
情景		N_2O	不包括	简化排除
	米原写检计和的冰	CO_2	包括	项目情景主要排放源
	粪便运输过程的消 ************************************	$\mathrm{CH_{4}}$	不包括	简化排除
	耗排放	N_2O	不包括	简化排除
			T h kr	不包括有机废弃物分解排放的
	污水存储过程中的	CO ₂ 不包括		CO_2
	消耗排放	$\mathrm{CH_4}$	包括	项目情景主要排放源
		N_2O	包括	项目情景主要排放源

6 额外性论证

减排量小于20000吨二氧化碳当量的项目,可以不进行额外性论证。

减排量大于20000吨二氧化碳当量的项目,项目参与方可借助最新版本的用来验证和评估VCS农业、林业和其它土地利用方式(AFOLU)项目活动额外性的VCS工具《VT0001 Tool for the Demonstration and Assessment of Additionality in VCS Agriculture, Forestry and Other Land Use (AFOLU) Project Activities, v3.0》1来验证项目的额外性。

[.]

7 面向便捷交易的农业畜禽养殖碳汇方法学项目计算流程

$$E_{proj,t} = E_{bsl,t} - \Delta E_{proj,t} - E_{l,t}$$

面向便捷交易的农业畜禽养殖碳汇方法学项目减排量,包括如下三个部分内容:

第一部分: E_{hslt} 表示基线情景碳排放量(单位: $tCO_2e/$ 年);

第二部分: ΔE_{proit} 表示项目情景碳排放量的变化量(单位: $tCO_2e/$ 年);

第三部分: E_{lt} 表示碳泄露量(单位: $tCO_2e/$ 年)。

8 农业畜禽养殖碳汇方法学基线情景碳排放量

畜禽养殖碳汇方法学基线情景碳排放量包括基线情景下的家禽、牲畜粪便处理过程中产生的甲烷 (CH_4) 、氧化亚氮 (N_2O) 的排放和所需用电、用水、化石燃料消耗过程的 CO_2 排放,通过下式计算:

$$E_{bsl,t} = E_{CH_4,t} + E_{N_2,0,t} + E_{elec/water/fuel,t}$$
 (1)

其中:

 $E_{bsl,t}$ 表示第 t 年的基线碳排放量(单位: tCO₂e/年);

 $E_{CH_4,t}$ 表示基线情景下第 t 年的 CH_4 碳排放量(单位: $tCO_2e/$ 年);

 $E_{N_2O,t}$ 表示基线情景下第 t 年的 N_2O 碳排放量(单位: $tCO_2e/$ 年);

 E_{elect} 表示基线情景下第 t 年用电产生的碳排放量(单位: tCO₂e/年);

 $E_{water.t}$ 表示基线情景下第 t 年用水产生的碳排放量(单位: tCO₂e/年);

 $E_{fuel,t}$ 表示基线情景下第 t 年化石燃料产生的碳排放量(单位: $tCO_2e/$ 年)。

8.1 基线 CH₄碳排放量(E_{CH_{4.t})}

甲烷排放量的大小在基线情况下是由畜种特性、管理策略和处理阶段的各个因素所决定的。这包括动物的消化甲烷产出、粪便的收集和储存方法,以及处理和处置阶段的策略。

$$E_{CH_4,t} = GWP_{CH_4} \times D_{CH_4} \times \sum_{i,c} (MCF_i \times PP_{c,CH_4} \times NA_{c,t} \times TVS_{c,t} \times MS\%_{baseline,i}) \tag{2}$$

其中:

 E_{CH_4} t表示基线情景下第 t 年的 CH₄碳排放量(单位: tCO₂e/年);

 GWP_{CH_4} 表示 CH_4 的全球增温潜势(单位: tCO_2e/t)(参考附件 1, CH_4 为 25 tCO_2e/t);

D_{CH4}表示 CH₄的密度(单位: t/m³) (CH₄密度为 0.00077t/m³);

 MCF_i 表示基线情景下管理系统i的 CH_4 转换因子(参考《2006 年 IPCC 清单指南》²第 4 卷第 10 章 表 10.17 提供的默认值);

 PP_{c,CH_4} 表示c类型动物挥发性固体的最大甲烷生产潜力(单位: m^3CH_4/tVS)(参考《2006年 IPCC 清单指南》第 4 卷第 10 章中表 10A-4 至 10A-9 的默认值,并由项目参与方论证这些数据的适用性);

 NA_{ct} 表示第t年c类型动物的年均存栏量(单位:头数);

 TVS_{ct} 表示第t年c类型动物排泄挥发性固体总量(单位: kg 干物质/动物/年);

MS%_{baseline,i}表示基线情景下动物粪便管理系统i处理的动物粪便比例(参考《2006 年 IPCC 清单指南》第 4 卷第 10 章中表 10A-4 至 10A-9 的默认值,并由项目参与方论证这些数据的适用性);

i表示粪便管理系统类型;

c表示家畜类型。

参数NA_{ct}、TVS_{ct}采用如下方法估算:

(1) 第t年动物的年均存栏量(NA_{ct})由下式计算:

$$NA_{c,t} = NA_{day,t} \times \left(\frac{NA_{out,c}}{365}\right)$$
 (3)

https://verra.org/methodologies/vt0001-tool-for-the-demonstration-and-assessment-of-additionality-in-vcs-agriculture-forestry-and-other-land-use-afolu-project-activities-v3-0/

https://www.ipcc-nggip.iges.or.jp/public/2006gl/chinese/index.html

其中:

NA_{davt}表示第 t 年养殖场动物存栏的天数(单位:天数);

 $NA_{out.c}$ 表示第 t 年 c 类型动物的年出栏量(单位: 头数)。

(2) 第t年c类型动物排泄挥发性固体总量(TVS_{ct})由下式计算:

$$TVS_{c,t} = (\frac{AW_c}{AW_d}) \times TVS_{c,d} \times d_t$$
 (4)

其中:

 TVS_{ct} 表示第t年c类型动物排泄挥发性固体总量(单位: kg 干物质/动物/年);

 AW_c 表示项目内平均动物体重(单位: kg);

 AW_d 表示项目内平均动物默认质量(单位: kg)(《2006 年 IPCC 国家温室气体清单指南》第 4 卷第 10 章表 10A-4 至 10A-9);

 $TVS_{c,d}$ 表示特定动物每天排泄的挥发性固体的默认值(单位: kg 干物质/动物/天)(《2006 年 IPCC 国家温室气体清单指南》第 4 卷第 10 章表 10A-4 至 10A-9);

 d_t 表示第 t 年系统运行天数。

8.2 基线 N₂O 碳排放量(E_{N₂O.t})

$$E_{N_20,t} = GWP_{N_20} \times 44/28 \times 1/1000 \times (E_{N_20,direct,t} + E_{N_20,indriect,t})$$
 (5)

其中:

 $E_{N_2O,t}$ 表示表示基线情景下第 t 年的 N_2O 排放量(单位: $tCO_2e/$ 年);

GWP_{N>O}表示 N₂O 的全球增温潜势(单位: tCO₂e/t) (参考附件 1, N₂O 为 298 tCO2e/t);

 $E_{N_2O,direct.t}$ 表示第 t 年的直接 N_2O 排放(单位: $tCO_2e/$ 年);

 $E_{N_2O,indriect,t}$ 表示第 t 年的间接 N_2O 排放(单位: $tCO_2e/$ 年)。

参数 $E_{N_2O,direct,t}$ 、 $E_{N_2O,indriect,t}$ 采用如下方法估算:

(1) 第 t 年 N₂O 直接排放计算公式如下:

$$E_{N_2O,direct,t} = \sum_{i,c} EF_{N_2O,direct,i} \times AEX_{c,t} \times NA_{c,t} \times MS\%_{baseline,i}$$
 (6)

其中:

 $E_{N_2O,direct,t}$ 表示第 t 年的直接 N_2O 排放(单位: $tCO_2e/$ 年);

 $EF_{N_2O,direct,i}$ 表示管理系统i的直接 N_2O 排放因子(参考《2006 年 IPCC 国家温室气体清单指南》第 4 卷第 10 章表 10.21 的 EF_3 默认值);

 $AEX_{c,t}$ 表示的动物年均氮排泄量(单位: kg/头/年)(参考 CMS-082-V01 附录 3 估算的特定动物种群的动物年均氮排泄量);

 NA_{ct} 表示第t年c类型动物的年均存栏量(单位:头数),计算方式参考公式(3);

MS%baseline,i表示管理系统i处理的动物粪便比例(参考《2006年 IPCC 清单指南》第 4 卷第 10 章中表 10A-4 至 10A-9的默认值,并由项目参与方论证这些数据的适用性)。

(2) 第 t 年 N₂O 间接排放计算公式如下:

$$E_{N_2O,indirect,t} = \sum_{i,c} EF_{N_2O,indirect} \times LN_{i,c} \times AEX_{c,t} \times NA_{c,t} \times MS\%_{baseline,i}$$
 (7)

其中:

 $E_{N_2O,indriect,t}$ 表示第 t 年的间接 N_2O 排放(单位: $tCO_2e/$ 年);

 $EF_{N_2O,indirect}$ 表示 N_2O 间接排放因子,主要包括 $EF_{4,i}$ + $EF_{5,i}$ ($EF_{4,i}$ 参考《2006年 IPCC 国家温室气体清单指南》第 4 卷第 11 章表 11.3 的默认值, 0.01; $EF_{5,i}$ 参考《2006年 IPCC 国家温室气体清单指南》第 4 卷第 11 章表 11.3 的默认值, 0.0075);

 $LN_{i,c}$ 表示粪便处理过程 NH₃和 NO_x 挥发造成的氮损失量的默认值(单位:%)(参考利用 IPCC 2006 第 4 卷第 10 章表 11.22 数据);

 $AEX_{c,t}$ 表示的动物年均氮排泄量(单位:kg/头/年)(参考 CMS-082-V01 附录 3 估算的特定动物种群的动物年均氮排泄量);

 NA_{ct} 表示第t年c类型动物的年均存栏量(单位:头数),计算方式参考公式(3);

MS%_{baseline,i}表示管理系统i处理的动物粪便比例(单位:%)(参考《2006年 IPCC 清单指南》第4 卷第 10 章中表 10A-4 至 10A-9 的默认值,并由项目参与方论证这些数据的适用性)。

8.3 基线用电、用水或化石燃料产生的基线 CO2 排放

$$E_{elec/water/fuel.t} = E_{elec.t} + E_{water.t} + E_{fuel.t}$$
(8)

其中:

 $E_{elec.t}$ 表示基线情景下第 t 年用电产生的碳排放量:

$$E_{elec,t} = \sum_{i=1}^{n} EF_{i,e} \times \Delta CE_{i,t}$$
 (9)

其中.

 EF_{ie} 表示所述预定时间段内所具有的电力资源的第i个碳排放系数[4];

 $\Delta CE_{i,t}$ 表示在 t 年中,电力能源消费数据中对应于第i个碳排放系数的电力能源的消费量,对应于第i个碳排放系数的电力能源的消费量包含碳排放系数为所述第i个碳排放系数的所有峰谷时段内的电力能源的消费量(单位: kwh)。

 $E_{water,t}$ 表示基线情景下第 t 年用水产生的碳排放量:

$$E_{water,t} = \sum_{i=1}^{n} EF_{i,w} \times \Delta CW_{t}$$
 (10)

其中:

 ΔCW_t 表示在所述预定t时间段内所述用水量(单位: t);

 EF_{iw} 表示用水的碳排放系数。

 $E_{fuel,t}$ 表示基线情景下第 t 年化石燃料产生的碳排放量:

$$E_{fuel,t} = \sum_{i=1}^{n} EF_{i,f} \times \Delta CF_{t}$$
 (11)

其中:

 ΔCF_t 表示在所述预定t时间段内化石燃料消耗量[4](单位: m^3/Kg);

 $EF_{i,f}$ 表示基线情景下化石燃料i消耗的燃料的 CO_2 排放因子;

i表示消耗化石燃料设备。

9 农业畜禽养殖碳汇方法学项目情景碳排放量

该项目的活动可能涵盖各个环节的温室气体排放。这包括在废弃物处理中释放的 CH_4 和 N_2O ,项目运行过程中因电力消耗和化石燃料燃烧产生的 CO_2 ,粪便运输所产生的气体排放以及粪便或污水储存过程中可能会产生的气体排放。项目排放计算方式如下:

$$\Delta E_{proj,t} = E_{ms,t} + E_{elec,t} + E_{fuel,t} + E_{car,t} + E_{save,t}$$
 (12)

其中:

 ΔE_{moit} 表示项目情景碳排放量的变化量(单位: $tCO_2e/$ 年);

 $E_{ms,t}$ 表示废弃物管理系统项目过程中产生的碳排放量(单位: $tCO_2e/$ 年);

 $E_{elec,t}$ 表示项目过程中用电产生的碳排放量(单位: $tCO_2e/$ 年);

 E_{fuelt} 表示项目过程中化石燃烧产生的碳排放量(单位: $tCO_2e/$ 年);

 $E_{car,t}$ 表示项目运输过程中产生的碳排放量(单位: $tCO_2e/$ 年);

 $E_{save,t}$ 表示污水存储过程的项目碳排放量(单位: $tCO_2e/$ 年)。

9.1 废弃物管理系统项目过程中产生的碳排放量(E_{ms.t})

$$E_{ms,t} = E_{ms,CH_{A,t}} + E_{ms,N_{2}O,t} \tag{13}$$

其中:

 $E_{ms,t}$ 表示废弃物管理系统项目过程中产生的碳排放量(单位: $tCO_2e/$ 年);

 $E_{ms,CH_A,t}$ 表示废弃物管理系统项目过程中 CH_4 产生的碳排放量(单位: $tCO_2e/$ 年);

 E_{ms,N_2O_t} 表示废弃物管理系统项目过程中 N_2O 产生的碳排放量(单位: $tCO_2e/$ 年)。

(1) 废弃物管理系统项目过程中 CH_4 产生的碳排放量($E_{ms,CH_4,t}$)计算方式如下:

$$E_{ms,CH_4,t} = GWP_{CH_4} \times D_{CH_4} \times \sum_{i,c} (MCF_i \times PP_{c,CH_4} \times Q_{i,t} \times MVS_{i,t})$$
(14)

其中:

 $E_{ms,CH_A,t}$ 表示废弃物管理系统项目过程中 CH_4 产生的碳排放量(单位: $tCO_2e/$ 年);

 GWP_{CH_4} 表示 CH₄的全球增温潜势(单位: tCO₂e/t)(参考附件 1, CH₄ 为 25 tCO₂e/t);

D_{CH},表示 CH₄的密度(单位: t/m³) (CH₄密度为 0.00077t/m3);

 MCF_i 表示基线情景下管理系统i的 CH_4 转换因子(参考《2006 年 IPCC 清单指南》第 4 卷第 10 章 表 10.17 提供的默认值);

 PP_{c,CH_4} 表示c类型动物挥发性固体的最大甲烷生产潜力(单位: m^3 CH4/tVS)(参考《2006 年 IPCC 清单指南》第 4 卷第 10 章中表 10A-4 至 10A-9 的默认值,并由项目参与方论证这些数据的适用性);

 $Q_{i,t}$ 表示全年管理系统i中处理粪便的质量(干物质)(单位:t/年);

 $\mathit{MVS}_{i,t}$ 表示管理系统i中处理粪便的年均挥发性固体(VS)浓度(单位: tVS /年)。

(2) 废弃物管理系统项目过程中 N_2O 产生的碳排放量($E_{ms,N_2O,t}$)计算方式如下:

$$E_{ms,N_2O,t} = GWP_{N_2O} \times 44/28 \times (E_{ms,N_2O,direct,t} + E_{ms,N_2O,indriect,t})$$
(15)

其中:

 $E_{ms,N_2O,t}$ 表示废弃物管理系统项目过程中 N_2O 产生的碳排放量(单位: $tCO_2e/$ 年);

 GWP_{N_2O} 表示 N_2O 的全球增温潜势(单位: tCO_2e/t)(参考附件 1, N_2O 为 298 tCO2e/t);

 $E_{ms,N_2O,direct,t}$ 表示第 t 年废弃物管理系统项目产生的直接 N_2O 排放(单位: $tCO_2e/$ 年);

 $E_{ms,N_2O,indriect,t}$ 表示第 t 年废弃物管理系统项目产生的间接 N_2O 排放(单位: tCO_2e /年)。

参数 $E_{ms,N_2O,direct,t}$ 、 $E_{ms,N_2O,indriect,t}$ 采用如下方法估算:

(1) 第 t 年废弃物管理系统项目产生的 N₂O 直接排放计算公式如下:

$$E_{ms,N_2O,direct,t} = \sum_{i,c} EF_{N_2O,direct,i} \times \frac{1}{1000} \times Q_{i,t} \times TN_{i,t}$$
 (16)

其中:

 $E_{ms,N_2O,direct,t}$ 表示第 t 年废弃物管理系统项目产生的直接 N_2O 排放(单位: $tCO_2e/$ 年); $EF_{N_2O,direct,i}$ 表示管理系统i的直接 N_2O 排放因子(参考《2006 年 IPCC 国家温室气体清单指南》第 4 卷第 10 章表 10.21 的 EF_3 默认值);

 $Q_{i,t}$ 表示全年管理系统i中处理粪便的质量(干物质)(单位:t/年);

 $TN_{i,t}$ 表示每年进入管理系统i的废弃物氮平均浓度(单位: tVS/年)。

(2) 第 t 年废弃物管理系统项目产生的 N₂O 间接排放计算公式如下:

$$E_{ms,N_2O,indriect,t} = \sum_{i,c} EF_{N_2O,indirect} \times \frac{1}{1000} \times (\Delta QTN_{i,t} - E_{ms,N_2O,direct,t} \times 1000)$$
 (17)

其中:

 $E_{ms,N_2O,indriect,t}$ 表示第 t 年废弃物管理系统项目产生的间接 N_2O 排放(单位: $tCO_2e/$ 年);

 $EF_{N_2O,indirect}$ 表示 N2O 间接排放因子,主要包括 $EF_{4,i}$ + $EF_{5,i}$ ($EF_{4,i}$ 参考《2006 年 IPCC 国家温室气体清单指南》第 4 卷第 11 章表 11.3 的默认值, 0.01; $EF_{5,i}$ 参考《2006 年 IPCC 国家温室气体清单指南》第 4 卷第 11 章表 11.3 的默认值, 0.0075);

$$\Delta QTN_{i,t} = Q_{i,t} \times TN_{i,t} - Q_{i,t}^{out} \times TN_{i,t}^{out}$$
(18)

其中:

 ΔQTN_{it} 表示废弃物管理系统i项目中的粪便总的质量×氮平均浓度变化量;

 $Q_{i,t}$ 表示进入管理系统i时项目中的废弃物总质量(单位:t/年); $TN_{i,t}$ 表示进入管理系统i时项目中的氮平均浓度(单位: KgN_t); $Q_{i,t}^{out}$ 表示通过管理系统i处理后项目中的废弃物总质量(单位:t/年); $TN_{i,t}^{out}$ 表示通过管理系统i处理后项目中的氮平均浓度(单位: KgN_t)。

9.2 项目过程中用电产生的碳排放量(E_{elect})

$$E_{elec.t} = \sum_{i=1}^{n} EF_{i.e} \times \Delta CE_{i.t}$$
 (19)

其中:

EF_{i.e}表示所述预定时间段内所具有的电力资源的第i个碳排放系数^[4];

 $\Delta CE_{i,t}$ 表示在 t 年中,电力能源消费数据中对应于第i个碳排放系数的电力能源的消费量,对应于第i个碳排放系数的电力能源的消费量包含碳排放系数为所述第i个碳排放系数的所有峰谷时段内的电力能源的消费量(单位: kwh)。

9.3 项目过程中化石燃烧产生的碳排放量(E_{fuel,t})

$$E_{fuel,t} = \sum_{i=1}^{n} EF_{i,f} \times \Delta CF_{t}$$
 (20)

其中:

 ΔCF_t 表示在所述预定t时间段内化石燃料消耗量(单位: t); $EF_{i,e}$ 表示项目情景下化石燃料i消耗的燃料的 CO_2 排放因子 $^{[4]}$; i表示消耗化石燃料设备。

9.4 项目运输过程中产生的碳排放量(E_{cart})

$$E_{car,t} = \sum_{i=1}^{n} EF_{i,c} \times \Delta CC_t$$
 (21)

其中:

 ΔCC_t 表示在项目情景下,t时间段不同运输设备产生内化石燃料消耗量(单位:t); $EF_{i,c}$ 表示项目情景运输下化石燃料i消耗的燃料的 CO_2 排放因子 $^{[4]}$;i表示消耗不同运输设备。

9.5 项目污水存储过程的温室气体排放量(E_{save.t})

通过固液分离处理的养殖场废水及尿液在好氧氧化塘储存阶段,实现对温室气体的排放,具体计算公式如下:

$$E_{save,t} = E_{save,CH_4,t} + E_{save,N_70,t}$$
 (22)

其中:

 $E_{save,t}$ 表示项目污水存储过程的温室气体排放量(单位: $tCO_2e/$ 年);

 $E_{save,CH_A,t}$ 表示项目污水存储过程的 CH_4 排放量(单位: $tCO_2e/$ 年);

 $E_{save,N_2O,t}$ 表示项目污水存储过程的 N_2O 排放量(单位: $tCO_2e/$ 年)。

(1) 项目污水存储过程的 CH_4 排放量($E_{save,CH_4,t}$)

$$E_{save,CH_4,t} = GWP_{CH_4} \times D_{CH_4} \times \sum_{i,c} (MCF_i \times PP_{c,CH_4} \times Q_{i,t,w} \times MVS_{i,t,w})$$
(23)

其中:

 $E_{save,CHAt}$ 表示污水存储过程中的 CH_4 产生的排放量(单位: $tCO_2e/$ 年);

 GWP_{CH_4} 表示 CH₄的全球增温潜势(单位: tCO_2e/t)(参考附件 1, CH₄ 为 25 tCO_2e/t);

D_{CH4}表示 CH₄的密度(单位: t/m³) (CH₄密度为 0.00077 t/m3);

 MCF_i 表示管理系统i污水好氧贮存系统的 CH_4 转换因子(参考《2006 年 IPCC 清单指南》第 4 卷第 10 章表 10.17 提供的默认值):

 PP_{c,CH_4} 表示c类型动物挥发性固体的最大甲烷生产潜力(单位: m^3 CH4/tVS)(参考《2006 年 IPCC 清单指南》第 4 卷第 10 章中表 10A-4 至 10A-9 的默认值,并由项目参与方论证这些数据的适用性); $Q_{i,t,w}$ 表示全年管理系统i中污水贮存阶段污水量(单位:t/年);

 $MVS_{i,t,w}$ 表示管理系统i中污水的年均挥发性固体(VS)浓度(单位: tVS/年)。

(2) 项目污水存储过程的 N_2O 排放量($E_{save,N_2O,t}$)

$$E_{save,N_20,t} = GWP_{N_20} \times 44/28 \times (E_{save,N_20,direct,t} + E_{save,N_20,indriect,t})$$
(24)

其中:

 $E_{save,N_7O,t}$ 表示项目污水存储过程的 N_2O 排放量(单位: $tCO_2e/$ 年);

 GWP_{N_2O} 表示 N_2O 的全球增温潜势(单位: tCO_2e/t)(参考附件 1, N_2O 为 298 tCO_2e/t);

 $E_{save,N_2O,direct,t}$ 表示项目污水存储过程的 N_2O 直接排放量(单位: $tCO_2e/$ 年);

 $E_{save,N_2O,indriect,t}$ 表示项目污水存储过程的 N_2O 间接排放量(单位: $tCO_2e/$ 年)。

参数E_{save,N2O,direct,t}、E_{save,N2O,indriect,t}采用如下方法估算:

1) 项目污水存储过程的 N₂O 直接排放量计算公式如下:

$$E_{save,N_2O,direct,t} = \sum_{i,c} EF_{N_2O,direct,i} \times Q_{i,t,w} \times LN_{i,t,w} \times 10^{-3}$$
 (25)

其中:

 $E_{save,N_2O,direct,t}$ 表示项目污水存储过程的 N_2O 直接排放量(单位: $tCO_2e/$ 年);

 $EF_{N_2O,direct,i}$ 表示管理系统i的直接 N_2O 排放因子(参考《2006 年 IPCC 国家温室气体清单指南》第 4 卷第 10 章表 10.21 的 EF_3 默认值);

 $Q_{i,t,w}$ 表示全年管理系统i中污水贮存阶段污水量(单位:t/年);

 LN_{itw} 管理系统i中污水贮存阶段项目中的氮平均浓度(单位: KgN/年)。

2) 项目污水存储过程的 N₂O 间接排放量计算公式如下:

$$E_{save,N_2O,indirect,t} = \sum_{i,c} EF_{save,N_2O,indirect,i} \times Q_{i,t,w} \times LN_{i,t,w} \times LN_{i,c} \times 10^{-5}$$
 (26)

其中:

 $E_{save,N_2O,indirect,t}$ 表示项目污水存储过程的 N_2O 间接排放量(单位: $tCO_2e/$ 年);

 $EF_{save,N_2O,indirect,i}$ 表示 N_2O 间接排放因子,主要包括 $EF_{4,i}$ + $EF_{5,i}$ ($EF_{4,i}$ 参考《2006年 IPCC 国家温室气体清单指南》第 4 卷第 11 章表 11.3 的默认值, 0.01; $EF_{5,i}$ 参考《2006年 IPCC 国家温室气体清单指南》第 4 卷第 11 章表 11.3 的默认值, 0.0075);

 $LN_{i,c}$ 表示粪便处理过程 NH₃ 和 NO_x 挥发造成的氮损失量的默认值(参考利用 IPCC 2006 第 4 卷 第 10 章表 10.22 数据);

 Q_{itw} 表示全年管理系统i中污水贮存阶段污水量(单位: t/年);

 LN_{itw} 管理系统i中污水贮存阶段项目中的氮平均浓度(单位: KgN/年)。

10 畜禽养殖碳汇方法学泄漏碳排放量

在项目执行过程中,泄漏主要指沼渣施入土壤后在项目边界外产生的额外排放。这些排放通过比较项目执行下的排放与基线排放的差值来计量,只有当差值为正时,即项目执行导致的排放增加,才被视为泄漏。负差值,即项目减少的排放,被记为零。

$$E_{lt} = \Delta E_{lN_20,t} + \Delta E_{l,CH_4,t} \tag{27}$$

其中:

 $\Delta E_{LN_2O_t}$ 表示第 t 年沼渣施入土壤造成的 N_2O 泄漏排放的变化量(单位: tCO_2e /年);

 $\Delta E_{l,CH_A,t}$ 表示第 t 年沼渣施入土壤造成的 CH4 泄漏排放的变化量(单位:tCO₂e/年)。

参数 $\Delta E_{l,N_2O,t}$ 、 $\Delta E_{l,CH_A,t}$ 的计算方式如下:

(1) 第t年沼渣施入土壤造成的 N_2O 泄漏排放的变化量($\Delta E_{IN_2O,t}$), 计算公式如下:

$$\Delta E_{l,N_2,0,t} = E_{proj,l,N_2,0,t} - E_{bs,l,l,N_2,0,t} \tag{28}$$

其中:

 $E_{proj,l,N_2O,t}$ 表示第 t 年项目情景下沼渣施入土壤造成的 N₂O 泄漏排放量(单位:tCO₂e/年); $E_{bsl,l,N_2O,t}$ 表示第 t 年基线情景下沼渣施入土壤造成的 N₂O 泄漏排放量(单位:tCO₂e/年)。 1)第 t 年项目情景下沼渣施入土壤造成的 N₂O 泄漏排放量($E_{proj,l,N_2O,t}$),计算公式如下:

$$E_{proj,l,N_2O,t} = GWP_{N_2O} \times 44/28 \times 1/1000 \times (E_{N_2O,l,land,t} + E_{N_2O,l,dila,t} + E_{N_2O,l,eva,t})$$
 (29)

$$\ddagger \div :$$

 $E_{proj,l,N_2O,t}$ 表示第 t 年项目情景下沼渣施入土壤造成的 N_2O 泄漏排放量(单位: $tCO_2e/$ 年); GWP_{N_2O} 表示 N_2O 的全球增温潜势(单位: tCO_2e/t)(参考附件 1, N_2O 为 298 tCO_2e/t);

 $E_{N_2O,lland\,t}$ 表示第 y 年沼渣施入土壤造成的 N_2O 泄漏排放(单位: $tCO_2e/$ 年);

 $E_{N_2O.l.dila.t}$ 表示第 y 年淋溶和径流造成的 N_2O 泄漏排放(单位: $tCO_2e/$ 年);

 $E_{N_2O,leva,t}$ 表示 y 年挥发造成的 N_2O 泄漏排放(单位: $tCO_2e/$ 年)。

第 y 年沼渣施入土壤造成的 N_2O 泄漏排放($E_{N_2O,l,land,t}$),计算公式如下:

$$E_{N_2O,l,land,t} = EF_{N_2O} \times \prod_{n=1}^{N_2O,l,land,t} (1 - R_{N,n}) \times \sum_{c} AEX_{c,t} \times NA_{c,t}$$
 (30)

第 y 年淋溶和径流造成的 N_2O 泄漏排放($E_{N_2O,l,dila,t}$), 计算公式如下:

$$E_{N_20,l,dila,t} = EF_5 \times F_l \times \prod_{n=1} (1 - R_{N,n}) \times \sum_{c} AEX_{c,t} \times NA_{c,t}$$
 (31)

第 y 年挥发造成的 N_2O 泄漏排放($E_{N_2O,l,eva,t}$),计算公式如下:

$$E_{N_2O,l,eva,t} = EF_4 \times \prod_{n=1} (1 - R_{N,n}) \times \sum_{c} AEX_{c,t} \times NA_{c,t}$$
(32)

其中:

 $EF_{N_2O,i}$ 表示管理系统i的直接 N_2O 排放因子(参考《2006 年 IPCC 国家温室气体清单指南》第 4 卷 第 10 章表 10.21 的 EF_3 默认值);

 $AEX_{c,t}$ 表示的动物年均氮排泄量(单位: Kg/头/年)(参考《CMS-082-V01 方法学》附录 3 估算的特定动物种群的动物年均氮排泄量):

 NA_{ct} 表示第t年c类型动物的年均存栏量(单位:头数),计算方式参考公式(3);

 R_{Nn} 表示氮消减率(单位:%) (参考《CMS-082-V01 方法学》附录 1,用 TN 估算);

 EF_5 表示 N_2 O 间接排放因子($EF_{5,i}$ 参考《2006 年 IPCC 国家温室气体清单指南》第 4 卷第 11 章表 11.3 的默认值, 0.0075);

 EF_4 表示 N_2 O 间接排放因子($EF_{4,i}$ 参考《2006 年 IPCC 国家温室气体清单指南》第 4 卷第 11 章表 11.3 的默认值, 0.01);

 F_l 表示添加到土壤中的氮/土壤中矿化的氮由于淋溶和径流造成的损失量(单位:%)(参考《2006年 IPCC 国家温室气体清单指南》第 4 卷第 11 章中表 11.3 的默认值)。

2) 第 t 年基线情景下沼渣施入土壤造成的 N_2O 泄漏排放量($E_{bsll,N_2O,t}$),计算公式如下:

$$E_{bsl,l,N_2O,t} = GWP_{N_2O} \times 44/28 \times 1/1000 \times (E_{N_2O,l,land,t} + E_{N_2O,l,dila,t} + E_{N_2O,l,eva,t}) \tag{33}$$

第 y 年沼渣施入土壤造成的 N_2O 泄漏排放($E_{N_2O,l,land,t}$),计算公式如下:

$$E_{N_2O,l,l,and,t} = EF_{N_2O} \times \prod_{n=1} (1 - R_{N,n}) \times \sum_{c} AEX_{c,t} \times NA_{c,t}$$
(34)

第 y 年淋溶和径流造成的 N_2O 泄漏排放($E_{N_2O,l,dila,t}$),计算公式如下:

$$E_{N_2O,l,dila,t} = EF_5 \times F_l \times \prod_{n=1} (1 - R_{N,n}) \times \sum_{c} AEX_{c,t} \times NA_{c,t}$$
 (35)

第 y 年挥发造成的 N_2O 泄漏排放($E_{N_2O,l,eva,t}$),计算公式如下:

$$E_{N_2O,l,eva,t} = EF_4 \times \prod_{n=1} (1 - R_{N,n}) \times F_n \times \sum_{c} AEX_{c,t} \times NA_{c,t}$$
 (36)

其中:

 F_n 表示挥发造成的 N 损失(单位:%);

其他参数参考项目情景下对应参数。

(2) 第 t 年沼渣施入土壤造成的 CH_4 泄漏排放的变化量($\Delta E_{LCH_4,t}$), 计算公式如下:

$$\Delta E_{l,CH_4,t} = E_{proj,l,CH_4,t} - E_{bsl,l,CH_4,t} \tag{37}$$

其中:

 $E_{proj,l,CH_4,t}$ 表示第 t 年项目情景下沼渣施入土壤造成的 CH₄ 泄漏排放量(单位: tCO₂e/年); $E_{bsl,l,CH_4,t}$ 表示第 t 年基线情景下沼渣施入土壤造成的 CH₄ 泄漏排放量(单位: tCO₂e/年)。

T/0T0P XXXX-2023

1) 第 t 年项目情景下沼渣施入土壤造成的 CH4 泄漏排放量(Eproj.l.CH4.t), 计算公式如下:

$$E_{proj,l,CH_4,t} = GWP_{CH_4} \times D_{CH_4} \times MCF_i \times \left[\prod_{n=1} (1 - R_{CH_4,N,n})\right] \times \sum_{i,c} (PP_{c,CH_4} \times NA_{c,t} \times TVS_{c,t} \times MS\%_{baseline.i})$$
(38)

其中:

 $E_{proj,l,CH_4,t}$ 表示第 t 年项目情景下沼渣施入土壤造成的 CH₄ 泄漏排放量(单位: tCO₂e/年); GWP_{CH_4} 表示 CH₄ 的全球增温潜势(单位: tCO₂e/t)(参考附件 1,CH₄ 为 25(tCO₂e/t)); D_{CH_4} 表示 CH₄ 的密度(单位: t/m³)(CH₄ 密度为 0.00077t/m3);

 MCF_i 表示项目情景下管理系统i的 CH_4 转换因子(参考《2006 年 IPCC 清单指南》第 4 卷第 10 章 表 10.17 提供的默认值):

 $R_{CH_4,N,n}$ 表示废弃物处理步骤 N、粪便管理方法 n 所分解的挥发性固体量(单位:%)(参考《CMS-082-V01 方法学》附录 1,用 VS 估算);

 PP_{c,CH_4} 表示c类型动物挥发性固体的最大甲烷生产潜力(单位: m^3 CH4/tVS)(参考《2006 年 IPCC 清单指南》第 4 卷第 10 章中表 10A-4 至 10A-9 的默认值,并由项目参与方论证这些数据的适用性); NA_{ct} 表示第t年c类型动物的年均存栏量(单位:头数);

 $TVS_{c,t}$ 表示第t年c类型动物排泄挥发性固体总量(单位:kg 干物质/头/年);

MS%_{proj,i}表示项目情景下动物粪便管理系统i处理的动物粪便比例(参考《2006年 IPCC 清单指南》 第 4 卷第 10 章中表 10A-4 至 10A-9 的默认值,并由项目参与方论证这些数据的适用性);

i表示粪便管理系统类型;

c表示家畜类型。

2) 第 t 年基线情景下沼渣施入土壤造成的 CH4 泄漏排放量(E_{bsll.CH4.t}), 计算公式如下:

$$E_{bsl,l,CH_4,t} = GWP_{CH_4} \times D_{CH_4} \times MCF_i \times \left[\prod_{n=1} (1 - R_{CH_4,N,n})\right] \times \sum_{i,c} (PP_{c,CH_4} \times NA_{c,t} \times TVS_{c,t} \times MS\%_{baseline.i})$$
(39)

其中:

 $E_{bsl,l,CH_4,t}$ 表示第 t 年基线情景下沼渣施入土壤造成的 CH_4 泄漏排放量(单位: tCO_2 e/年); $MS\%_{baseline,i}$ 表示基线情景下动物粪便管理系统i处理的动物粪便比例(参考《2006 年 IPCC 清单指南》第 4 卷第 10 章中表 10A-4 至 10A-9 的默认值,并由项目参与方论证这些数据的适用性); 其他参数参考项目情景下的相关参数

11 可交易智能测度系统(ALPCS)智能计算软件工具

本方法学基于 JAVA、VUE、MYSQL 等开发语言,辅以内嵌机器学习算法,开发了可交易智能测度系统(ALPCS)智能计算软件工具。

12 监测参数

项目过程中不需要直接测定的参数如表 2, 需要监测的参数如表 3。

表2 不需要直接监测的参数

编号	参数名称	参数单位	参数描述	数据来源	数据值	备注
1	GWP_{CH_4}	tCO2e/t	表示 CH4 的全球增温潜势	参考附件 1	25	
2	$\mathrm{D}_{\mathrm{CH_4}}$	t/m^3	表示 CH4 的密度	/	0.00077	
3	MCF_i	/	表示项目情景下管理系统i的CH4转换因子	参考《2006 年 IPCC 清单指南》第 4 卷 第 10 章表 10.17 的默认值	视具体情况而定	
4	PP_{c,CH_4}	m^3 CH4/ tVS	表示 c 类型动物挥发性固体的最大甲烷生产潜力	参考《2006 年 IPCC 清单指南》第 4 卷		
5	MS% _{baseline,i}	%	表示项目情景下动物粪便管理系统 i 处理 的动物粪便比例	第 10 章表 10A-4 至 10A-9 的默认值, 并由项目参与方论证这些数据的适用	视具体情况而定	
6	AW_d	kg	表示项目内平均动物默认质量	并由项目参与力 化证及型数据的起用 性		
7	$TVS_{c,d}$	kgVS/动物/ 天	表示特定动物每天排泄的挥发性固体的默 认值	E		
8	GWP_{N_2O}	tCO2e/t	表示 N ₂ O 的全球增温潜势	参考附件 1	298	

9	$EF_{N_2O,indirect}$	/	表示 N ₂ O 间接排放因子,主要包括 EF _{4,i} + EF _{5,i}	参考《2006 年 IPCC 国家温室气体清单 指南》第 4 卷第 11 章表 11.3 的默认值 0.01; EF _{5,1} 参考《2006 年 IPCC 国家温 室气体清单指南》第 4 卷第 11 章表 11.3	0.0175
				的默认值 0.0075	
10	$\mathrm{EF}_{\mathrm{N_2O,direct,i}}$	/	表示管理系统 i 的直接 N ₂ O 排放因子	参考《2006 年 IPCC 清单指南》第 4 卷 第 10 章表 10.21 中 EF3 默认值	视具体情况而定
11	$AEX_{c,t}$	Kg/头/年	表示的动物年均氮排泄量	参考标准 CMS-082-V01 附录 3	视具体情况而定
				参考文献 4: Guo, D., Chen, H., Long, R.,	
				& Ni, Y. (2018). An integrated	
			表示所述预定时间段内所具有的电力资源	measurement of household carbon	
12	$EF_{i,e}$	/	的第 i 个碳排放系数	emissions from a trading-oriented	视具体情况而定
				perspective: a case study of urban	
				families in Xuzhou, China. Journal of	
				Cleaner Production,188,613-624. 根据《中华人民共和国气候变化第二次	
13	$EF_{i,w}$	/	表示用水的碳排放系数	两年更新报告》统计	0.91
				参考文献 4: Guo, D., Chen, H., Long, R.,	
				& Ni, Y. (2018). An integrated	
				measurement of household carbon	
14	$EF_{i,f}$	/	表示基线情景下化石燃料i消耗的燃料的	emissions from a trading-oriented	视具体情况而定
			CO ₂ 排放因子	perspective: a case study of urban	
				families in Xuzhou, China. Journal of	
				Cleaner Production, 188, 613-624	
			表示项目情景运输下化石燃料 i 消耗的燃	参考文献 4: Guo, D., Chen, H., Long, R.,	
15	$EF_{i,c}$	/	料的 CO2 排放因子	& Ni, Y. (2018). An integrated	视具体情况而定
			711/2500 4	measurement of household carbon	

			emissions from a trading-oriented	
			perspective: a case study of urban	
			families in Xuzhou, China. Journal of	
			Cleaner Production, 188, 613-624	
I N	0/	表示粪便处理过程 NH3 和 NOx 挥发造成的	参考《2006 年 IPCC 清单指南》第 4 卷	视具体情况而定
LIN _{i,c}	70	氮损失量的默认值	第 10 章表 10.22 数据	忧 共伴 目
$R_{N,n}$	%	表示氮消减率	参考标准 CMS-082-V01 附录 1(TN 值)	视具体情况而定
$R_{CH_4,N,n}$	%	表示废弃物处理步骤 N、粪便管理方法 n 所分解的挥发性固体量	参考标准 CMS-082-V01 附录 1 (VS 值)	视具体情况而定
			参考《2006 年 IPCC 国家温室气体清	
F_1	%		单指南》第4卷第11章中表11.3的默	0.3
		丁	认值	
			参考《2006 年 IPCC 国家温室气体清	
F_n	%	表示挥发造成的 N 损失	单指南》第4卷第11章中表11.3的默	0.2
			认值	
			参考《2006 年 IPCC 国家温室气体清单	
$EF_{N_2O,i}$	/	表示管理系统 i 的直接 N ₂ O 排放因子	指南》第 4 卷第 10 章表 10.21 的 EF3	视具体情况而定
			默认值	
MCO	0./	表示项目情景下动物粪便管理系统i处理	参考《2006年 IPCC 清单指南》第 4 卷	知 月 任 桂 如 才 合
MS% _{proj,i}	%	的动物粪便比例	第 10 章表 10A-4 至 10A-9 的默认值	视具体情况而定
	$R_{CH_4,N,n}$ F_1 F_n	$R_{N,n}$ % $R_{CH_4,N,n}$ % F_1 % F_n % F_n %	LN _{i,c} % 氮损失量的默认值 R _{N,n} % 表示氮消减率 表示废弃物处理步骤 N、粪便管理方法 n 所分解的挥发性固体量 分解的挥发性固体量 F ₁ % 表示添加到土壤中的氮/土壤中矿化的氮由于淋溶和径流造成的损失量 F _n % 表示挥发造成的 N 损失 EF _{N2O,i} / 表示管理系统 i 的直接 N ₂ O 排放因子 MS%praii %	LN _{I,c} % 表示義便处理过程 NH₃ 和 NOx 挥发造成的 氮损失量的默认值 参考《2006 年 IPCC 清单指南》第 4 卷 第 10 章表 10.22 数据 R _{N,n} % 表示氮消减率 参考标准 CMS-082-V01 附录 1 (TN 值) R _{CH4,N,n} % 表示添加到土壤中的氮/土壤中矿化的氮由于淋溶和径流造成的损失量 参考《2006 年 IPCC 国家温室气体清单指南》第 4 卷第 11 章中表 11.3 的默认值 F _n % 表示挥发造成的 N 损失 单指南》第 4 卷第 11 章中表 11.3 的默认值 EF _{N2,0,i} / 表示管理系统 i 的直接 N ₂ O 排放因子 指南》第 4 卷第 10 章表 10.21 的 EF3默认值 MS%0cmii %

表3 需要监测的参数

编号	参数名称	参数单位	参数描述	测量方式	数据值	备注
1	NA _{day,t}	天	表示第t年养殖场动物存栏的天数			
2	$NA_{out,c}$	头	表示第t年c类型动物的年出栏量			
3	AW_c	kg	表示项目内平均动物体重			

T/0T0P XXXX—2023

4	d _t	天	表示第 t 年系统运行天数
			表示在 t 年中, 电力能源消费数据中对应于第 i 个碳排放系数的电力能源
5	$\Delta \text{CE}_{i,t}$	kwh	的消费量,对应于第 i 个碳排放系数的电力能源的消费量包含碳排放系数
			为所述第i个碳排放系数的所有峰谷时段内的电力能源的消费量
6	ΔCW_{t}	/	表示在所述预定 t 时间段内所述用水量;EF _i 表示用水的碳排放系数
7	ΔCF_{t}	m^3/Kg	表示在所述预定 t 时间段内化石燃料消耗量
8	$Q_{i,t}$	t/年	表示全年管理系统 i 中处理粪便的质量(干物质)
9	$MVS_{i,t}$	t VS/年	表示管理系统 i 中处理粪便的年均挥发性固体(VS)浓度
10	$Q_{i,t,w}$	t/年	表示全年管理系统i中污水贮存阶段污水量
11	$MVS_{i,t,w}$	t VS/年	表示管理系统 i 中污水的年均挥发性固体(VS)浓度
12	$TN_{i,t}$	Kg N/t	表示每年进入管理系统 i 的废弃物氮平均浓度
13	$Q_{i,t}^{out}$	t/年	表示通过管理系统 i 处理后项目中的废弃物总质量
14	$TN^{\mathrm{out}}_{i,t}$	Kg N/t	表示通过管理系统 i 处理后项目中的氮平均浓度
15	ΔCC_{t}	t	表示在项目情景下,t时间段不同运输设备产生内化石燃料消耗量
16	$EF_{car,i}$	/	表示项目情景运输下化石燃料 i 消耗的燃料的 CO2 排放因子
17	$Q_{i,t,w}$	t/年	表示全年管理系统i中污水贮存阶段污水量
18	$LN_{i,t,w}$	Kg N/t	表示管理系统i中污水贮存阶段项目中的氮平均浓度

13 农业畜禽养殖碳汇方法学项目测算步骤

本方法学农业畜禽养殖碳汇方法学项目测算样例如表 4-表 7 所示。

表4 基线情景碳排放量Ebelt计算表

		松 ⁺ 全以用京峽洲从里山 _{bsl,t} / 并仅		
	基线情景 CH ₄ 碳排放量E _{CH₄,t} (单位: 吨碳当量/年)	基线情景 N ₂ O 碳排放量E _{N₂O,t} (单位: 吨碳当量/年)	基线情景用电/水/化石燃料碳排放量E _{elec/water/fuel,t} (单位:吨碳当量/年)	基线情景 碳排放量 E _{bsl,t} (单位:吨 碳当量/年)
计算	$\begin{split} &= \text{GWP}_{\text{CH}_4} \times \text{D}_{\text{CH}_4} \times \sum_{i,c} (\text{MCF}_i \times \text{PP}_{c,\text{CH}_4} \times \\ &\text{NA}_{c,t} \times \text{TVS}_{c,t} \times \text{MS\%}_{\text{baseline},i}) = \text{GWP}_{\text{CH}_4} \times \\ &\text{D}_{\text{CH}_4} \times \sum_{i,c} (\text{MCF}_i \times \text{PP}_{c,\text{CH}_4} \times \text{NA}_{\text{day},t} \times \\ &(\frac{\text{NA}_{\text{out},c}}{365}) \times \frac{\text{AW}_c}{\text{AW}_d}) \times \text{TVS}_{c,d} \times d_t \times \text{MS\%}_{\text{baseline},i}) \end{split}$	$\begin{split} &= \text{GWP}_{\text{N}_2\text{O}} \times 44/28 \times 1/1000 \times (\text{E}_{\text{N}_2\text{O},\text{direct},t} + \text{E}_{\text{N}_2\text{O},\text{indriect},t}) = \\ &\text{GWP}_{\text{N}_2\text{O}} \times 44/28 \times 1/1000 \times (\sum_{\text{i,c}} \text{EF}_{\text{N}_2\text{O},\text{direct},i} \times \text{AEX}_{\text{c,t}} \times \\ &\text{NA}_{\text{c,t}} \times \text{MS}\%_{\text{baseline},i} + \sum_{\text{i,c}} \text{EF}_{\text{N}_2\text{O},\text{indirect}} \times \text{LN}_{\text{i,c}} \times \text{AEX}_{\text{c,t}} \times \\ &\text{NA}_{\text{c,t}} \times \text{MS}\%_{\text{baseline},i}) \end{split}$	$= E_{elec,t} + E_{water,t} + E_{fuel,t}$ $= \sum_{i=1}^{n} EF_{i,e} \times \Delta CE_{i,t} + \sum_{i=1}^{n} EF_{i,w} \times \Delta CW_{t} + \sum_{i=1}^{n} EF_{i,f} \times \Delta CF_{t}$	$= E_{\text{CH}_4,\text{t}} + E_{\text{N}_2\text{O},\text{t}} + E_{\text{elec/water/f}}$
参数	给定值: GWP_{CH_4} =25; D_{CH_4} =0.00077; 参考值: MCF_i 、 PP_{c,CH_4} 、 $MS\%_{baseline,i}$ 、 AW_d 、 $TVS_{c,d}$ 参考《2006年 $IPCC$ 清单指南》第 4 卷第 10 章表 10.17、10A-4 至 10A-9 的默认值; 监测值: $NA_{day,t}$ 表示第 t 年养殖场动物存栏的 天数; $NA_{out,c}$ 表示第 t 年 c 类型动物的年出栏 量(头数); AW_c 表示项目内平均动物体重, kg ; d_t 表示第 t 年系统运行天数。	给定值: GWP_{N_2O} =298; $EF_{N_2O,indirect}$ = $EF_{4,i}$ + $EF_{5,i}$, 其中 $EF_{4,i}$ = 0.01, $EF_{5,i}$ =0.0075; 参考值: $EF_{N_2O,direct,i}$ 参考《2006 年 $IPCC$ 清单指南》第 4 卷第 10 章表 10.21 中 $EF3$ 默认值; $AEX_{c,t}$ 参考 CMS -082-V01 附录 3 估算的特定动物种群的动物年均氮排泄量; $LN_{i,c}$ 、 $MS\%_{baseline,i}$ 参考《2006 年 $IPCC$ 清单指南》第 4 卷第 10 章表 11.22 数据和表 10.17、10A-4 至 10A-9 的默认值; 监测值: $NA_{c,t}$ = $NA_{day,t}$ × ($\frac{NA_{out,c}}{365}$) ,参考本表第一列中 $NA_{day,t}$ 、 $NA_{out,c}$ 的监测方法。	给定值: EF _{i,w} 表示用水的碳排放系数,取值 0.91; 参考值: EF _{i,e} 表示所述预定时间段内所具有的电力资源 的第 i 个碳排放系数; EF _{i,f} 表示基线情景下化石燃料 i 消 耗的燃料的 CO ₂ 排放因子; 监测值: ΔCE _{i,t} 表示在 t 年中,电力能源消费数据中对应 于第 i 个碳排放系数的电力能源的消费量,对应于第 i 个碳排放系数的电力能源的消费量包含碳排放系数为所 述第 i 个碳排放系数的所有峰谷时段内的电力能源的消 费量; ΔCW _t 表示在所述预定 t 时间段内所述用水量; ΔCF _t 表示在所述预定 t 时间段内化石燃料消耗量。	/

T/0T0P XXXX—2023

第2年

. . .

表5 项目情景碳排放量的变化量ΔE_{proj,t}计算表

	废弃物管理系统项目过程中产生的碳排放量E _{ms,t} (单位:吨碳当量/年)	项目过程中用电产 生的碳排放量E _{elec,t} (单位:吨碳当量/年)	项目过程中 化石燃烧产 生的碳排放 量E _{fuel,t} (单位: 吨碳 当量/年)	项目运输过程 中产生的碳排 放量E _{car,t} (单位: 吨碳当 量/年)	项目污水存储过程的温室气体排放量E _{save,t} (单位:吨碳当量/年)	农业畜禽养殖 碳汇方法学项 目减排量E _{proj.t} (单位: 吨碳当 量/年)
计算	$\begin{split} &= E_{ms,CH_4,t} + E_{ms,N_2O,t} \!\!=\!\! [GWP_{CH_4} \times D_{CH_4} \times \sum_{i,c} (MCF_i \times PP_{c,CH_4} \times Q_{i,t} \times MVS_{i,t})] + [GWP_{N_2O} \times 44/28 \times (E_{ms,N_2O,direct,t} + E_{ms,N_2O,indriect,t})] \\ &= \! [GWP_{CH_4} \times D_{CH_4} \times \sum_{i,c} (MCF_i \times PP_{c,CH_4} \times Q_{i,t} \times MVS_{i,t})] + [GWP_{N_2O} \times 44/28 \times (\sum_{i,c} EF_{N_2O,direct,i} \times \frac{1}{1000} \times Q_{i,t} \times TN_{i,t}) + \sum_{i,c} EF_{N_2O,indirect} \times \frac{1}{1000} \times (\Delta QTN_{i,t} - E_{ms,N_2O,direct,t} \times 1000)] \end{split}$	$= \sum_{i=1}^{n} EF_{i,e} \times \Delta CE_{i,t}$	$= \sum_{i=1}^{n} EF_{i,f}$ $\times \Delta CF_{t}$	$= \sum_{i=1}^{n} EF_{i,c} \times \Delta CC_{t}$	$\begin{split} &= E_{save,CH_4,t} + E_{save,N_2O,t} \!\!=\!\! GWP_{CH_4} \times D_{CH_4} \times \\ & \sum_{i,c} (MCF_i \times PP_{c,CH_4} \times Q_{i,t,w} \times MVS_{i,t,w}) + \\ & GWP_{N_2O} \times 44/28 \times (\sum_{i,c} EF_{N_2O,direct,i} \times Q_{i,t,w} \times \\ & LN_{i,t,w} \times 10^{-3} + \sum_{i,c} EF_{save,N_2O,indirect,i} \times Q_{i,t,w} \times \\ & LN_{i,t,w} \times LN_{i,c} \times 10^{-5}) \end{split}$	$= E_{ms,t} + E_{elec,t}$ $+ E_{fuel,t} + E_{car,t}$ $+ E_{save,t}$
参数	给定值: $GWP_{CH_4}=25$; $D_{CH_4}=0.00077$; $GWP_{N_2O}=298$; $EF_{N_2O,indirect}=EF_{4,i}+EF_{5,i}$, 其中 $EF_{4,i}=0.01$, $EF_{5,i}=0.0075$; 参考值: MCF_i 、 $EF_{N_2O,direct,i}$ 、 PP_{c,CH_4} 参考《2006年 $IPCC$ 清单指南》第 4 卷第 10 章表 10.17、表 10.21的 $EF3$ 默认值和表 10A-4 至 10A-9 的默认值; 监测值: $Q_{i,t}$ 表示全年管理系统 i 中处理粪便的质量(干物质); $MVS_{i,t}$ 表示管理系统 i 中处理粪便的年均挥发性固体(VS)浓度; $TN_{i,t}$ 表示每年进入管理系统 i 的废弃物氮平均浓度; $\Delta QTN_{i,t}=Q_{i,t}\times TN_{i,t}-Q_{i,t}^{out}\times TN_{i,t}^{out}$,其中, $\Delta QTN_{i,t}$ 表示废弃物管理系统 i 项目中的粪便总的质量×氮平均浓度变化量; $Q_{i,t}$ 表示进入管理系统 i 时项目中的废弃物总质量; $TN_{i,t}$	参考值: EF _{i,e} 表示所 述预定时间段内所 具有的电力资源的 第 i 个碳排放系数; 监测值: ΔCE _{i,t} 表示 在 t 年中,电力能源 消费数据中对应于 第 i 个碳排放系数的 电力能源的消费量, 对应于第 i 个碳排放 系数的电力能源的 消费量包含碳排放 系数为所述第 i 个碳	参考值: EF _{i,f} 表示基线石 料 i 料的 CO2 排 放 M 在 CO2 排 放 M 在 CO2 排 放 M 示 定 t 时 间 发 内 化 和 和 和 和 和 和 和 和 和 和 和 和 和 和 和 和 和 和	参考值: EF _{i,c} 表示项目情景运: 消耗的燃料的 CO2 排放因 子。 监测值: ΔCC _t 表示在项目情 景下,t时间段 不同运输设备 产生内化石燃 料消耗量。	给定值: GWP_{CH_4} =25; D_{CH_4} =0.00077; GWP_{N_20} =298; $EF_{save,N_20,indirect,i}$ = $EF_{4,i}$ + $EF_{5,i}$, 其中 $EF_{4,i}$ = 0.01, $EF_{5,i}$ =0.0075; 参考值: MCF_i 、 $EF_{N_20,direct,i}$ 、 $TN_{save,i,t}$ 、 PP_{c,CH_4} 参考《2006年 $IPCC$ 清单指南》第 4 卷第 10 章表 10.17、表 10.21 的 $EF3$ 默认值、表 11.22 数据和表 10A-4 至 10A-9 的默认值; $LN_{i,c}$ 表示 粪便处理过程 $NH3$ 和 NOx 挥发造成的氮损失量的默认值; $LN_{i,c}$ 表示 许例是证据 $LN_{i,t,w}$ 表示全年管理系统 $LN_{i,t,w}$ 中污水贮存 所段污水量; $LN_{i,t,w}$ 表示管理系统 $LN_{i,t,w}$ 管理系统 $LN_{i,t,w}$ $LN_{$	

T/0T0P XXXX—2023

表示进入管理系统 i 时项目中的氮平均浓度;Qout 表示通过管理系统 i 处理后项目中的废弃物总质量;TN'i 谷时段内的电力能 表示通过管理系统 i 处理后项目中的氮平均浓度。 源的消费量。

第1年

第2年

...

表6 碳泄露量 $E_{l,t}$ 计算表

	N_2O 泄漏排放的变化量 $\Delta E_{l,N_2O,t}$ (单位:吨碳当量/年)	CH ₄ 泄漏排放的变化量ΔE _{l,CH₄,t} (单位:吨碳当量/年)	碳泄露量E _{l,t} (单位: 吨碳当 量/年)
	$= E_{\text{proj,l,N}_2\text{O,t}} - E_{\text{bsl,l,N}_2\text{O,t}} = [\text{GWP}_{\text{N}_2\text{O}} \times 44/28 \times 1/1000 \times (E_{\text{N}_2\text{O,l,land,t}} + E_{\text{N}_2\text{O,l,dila,t}} + $	$= E_{\text{proj,l,CH}_4,t} - E_{\text{bsl,l,CH}_4,t}$	$= \Delta E_{l,N_2O,t}$
` I . <i>titls</i> -	$\begin{split} &E_{N_2O,l,eva,t})] - [GWP_{N_2O} \times 44/28 \times 1/1000 \times (E_{N_2O,l,land,t} + E_{N_2O,l,dila,t} + E_{N_2O,l,eva,t})] \\ = &[GWP_{N_2O} \times 44/28 \times 1/1000 \times (EF_{N_2O} \times \prod_{n=1}^{} (1 - R_{N,n}) \times \sum_{c} AEX_{c,t} \times NA_{c,t} + EF_5 \times F_l \times I)] \\ - &E(AEX_{c,t} \times NA_{c,t} + EX_{c,t} \times NA_{c,t} + EX_{c,t} \times NA_{c,t} + EX_{c,t} \times I)] \\ - &E(AEX_{c,t} \times NA_{c,t} + EX_{c,t} \times NA_{c,t} + EX_{c,t} \times I)] \\ - &E(AEX_{c,t} \times NA_{c,t} + EX_{c,t} \times NA_{c,t} + EX_{c,t} \times I)] \\ - &E(AEX_{c,t} \times NA_{c,t} + EX_{c,t} \times NA_{c,t} + EX_{c,t} \times I)] \\ - &E(AEX_{c,t} \times NA_{c,t} + EX_{c,t} \times NA_{c,t} + EX_{c,t} \times NA_{c,t} + EX_{c,t} \times I)] \\ - &E(AEX_{c,t} \times NA_{c,t} + EX_{c,t} \times NA_{c,t} + EX_{c,t} \times I)] \\ - &E(AEX_{c,t} \times NA_{c,t} + EX_{c,t} \times NA_{c,t} + EX_{c,t} \times I)] \\ - &E(AEX_{c,t} \times NA_{c,t} + EX_{c,t} \times NA_{c,t} + EX_{c,t} \times I)] \\ - &E(AEX_{c,t} \times NA_{c,t} + EX_{c,t} \times I)] \\ - &E(AEX_{c,t} \times NA_{c,t} + EX_{c,t} \times I)] \\ - &E(AEX_{c,t} \times NA_{c,t} + EX_{c,t} \times I)] \\ - &E(AEX_{c,t} \times NA_{c,t} + EX_{c,t} \times I)] \\ - &E(AEX_{c,t} \times NA_{c,t} + EX_{c,t} \times I)] \\ - &E(AEX_{c,t} \times NA_{c,t} + EX_{c,t} \times I)] \\ - &E(AEX_{c,t} \times NA_{c,t} + EX_{c,t} \times I)] \\ - &E(AEX_{c,t} \times I) \\ - &E(AEX$	$= \!\! \left\{ \text{GWP}_{\text{CH}_4} \times \text{D}_{\text{CH}_4} \times \text{MCF}_i \times \left[\prod_{n=1} \left(1 - \text{R}_{\text{CH4,N,n}} \right) \right] \times \sum_{i,c} \left(\text{PP}_{\text{c,CH}_4} \times \right. \right. \\$	$+ \Delta E_{l,CH_4,t}$
计算	$\textstyle \prod_{n=1} \left(1 - R_{N,n}\right) \times \sum_{c} AEX_{c,t} \times NA_{c,t} + EF_4 \times \prod_{n=1} \left(1 - R_{N,n}\right) \times \sum_{c} AEX_{c,t} \times NA_{c,t})]$	$\text{NA}_{\text{c,t}} \times \text{TVS}_{\text{c,t}} \times \text{MS}\%_{\text{baseline,i}}) \big\} - \big\{ \text{GWP}_{\text{CH}_4} \times \text{D}_{\text{CH}_4} \times \text{MCF}_i \times \big[\prod_{n=1} \left(1 - \frac{1}{n} \right) \big] + \frac{1}{n} \left(\frac{1}{n} \right) \big\} + \frac{1}{n} \left(\frac{1}{n} \right) \left(\frac{1}{n} \right)$	
	$\begin{split} -[\text{GWP}_{\text{N}_2\text{O}} \times 44/28 \times 1/1000 \times (\text{EF}_{\text{N}_2\text{O}} \times \prod_{n=1} (1 - \text{R}_{\text{N},n}) \times \sum_{c} \text{AEX}_{c,t} \times \text{NA}_{c,t} + \text{EF}_5 \times \\ F_{\text{I}} \times \prod_{n=1} (1 - \text{R}_{\text{N},n}) \times \sum_{c} \text{AEX}_{c,t} \times \text{NA}_{c,t} + \text{EF}_4 \times \prod_{n=1} (1 - \text{R}_{\text{N},n}) \times F_n \times \sum_{c} \text{AEX}_{c,t} \times \text{NA}_{c,t})] \end{split}$	$R_{\text{CH4,N,n}})\big] \times \textstyle \sum_{i,c} \left(\text{PP}_{c,\text{CH}_4} \times \text{NA}_{c,t} \times \text{TVS}_{c,t} \times \text{MS\%}_{\text{baseline,i}} \right) \Big\}$	
	给定值: GWP_{N_20} =298; EF_5 = 0.0075; EF_4 =0.01; F_1 =0.3; F_n = 0.2;	给定值: GWP _{CH4} =25; D _{CH4} =0.00077;	/
	参考值: $\mathrm{EF}_{\mathrm{N}_2\mathrm{O},\mathrm{i}}$ 参考《2006 年 IPCC 国家温室气体清单指南》第 4 卷第 10 章表 10.21 的	参考值:MCF _i 、PP _{c,CH4} 和MS% _{proj,i} 参考《2006 年 IPCC 清单指南》第	
	EF3 默认值; AEX _{c,t} 参考 CMS-082-V01 附录 3 估算的特定动物种群的动物年均氮排泄量;	4 卷第 10 章表 10.17 的默认值和表 10A-4 至 10A-9 的默认值; R _{CH4,N,n}	
参数	R _{N,n} 表示氮消减率,参考标准 CMS-082-V01 附录 1(TN 值);	表示废弃物处理步骤 N 、粪便管理方法 n 所分解的挥发性固体量(%),	
	监测值: $NA_{c,t} = NA_{day,t} \times (\frac{NA_{out,c}}{365})$, 参考表 4 第一列中 $NA_{day,t}$ 、 $NA_{out,c}$ 的监测方法; ;	参考标准 CMS-082-V01 附录 1(VS 值); 监测值: TVS $_{\rm ct}$ 表示第 t 年 c 类型动物排泄挥发性固体总量(kg 干物质	
	其他参数参考项目情景下对应参数。	/头/年); 其他参数参考项目情景下的相关参数。	
第1年			
第2年			

表7 农业畜禽养殖碳汇项目净碳汇量计算总表

	基线情景碳排放量E _{bsl,t} (单位:吨碳当量/年)	项目情景碳排放量的变化量ΔE _{proj,t} (单位:吨碳当量/年)	碳泄露量E _{l,t} (单位:吨碳当量/年)	农业畜禽养殖碳汇方法学项目减排量 $E_{proj,t}$ (单位: 吨碳当量/年)
第1年				
第2年				

附录 A (资料性附录)

全球变暖潜势(GWP)值对照表

工业名称或通用名称	化学分子式	100年GWP (tCO ₂ e/t)
二氧化碳	CO_2	1
甲烷	$\mathrm{CH_4}$	25
氧化亚氮	N_2O	298

注:来源 IPCC Fourth Assessment Report: Climate Change 2007, Table 2.14。数据仅供参考,开展产品碳足迹核算时应注意使用 IPCC 提供的最新数据,或根据核算目标及核算依据进行调整。

参考文献

- 1.畜禽粪便堆肥管理减排项目方法学[S].北京.中国农业科学院农业环境与可持续发展研究所.2013.
- 2.粪便管理系统中的温室气体减排[S].广东.碳普惠核证自愿减排量交易平台(PHCER).2014.
- 3.刘昱.中国农业生态系统的碳氮平衡模拟、耦合和政策评估[D].清华大学,2016.
- 4. Guo, D., Chen, H., Long, R., & Ni, Y. (2018). An integrated measurement of household carbon emissions from a trading-oriented perspective: a case study of urban families in Xuzhou, China. *Journal of Cleaner Production*, 188, 613-624.
- 5.刘振涛,路剑.畜禽养殖粪肥还田参与碳交易的实现路径探索[J].黑龙江畜牧兽医,2023(06):1-6+22.
- 6.班荣舶,王家录,冯开禹,吴廷连.安顺市畜禽养殖碳排放时空差异研究[J].地域研究与开发 2017,36(02): 151-155.
- 7.关于推进生态产品价值实现助力乡村振兴的总体建议[N].四平日报,2022-09-30(002).

26